Инструменты пользователя

Инструменты сайта


examination:mo:question21

Рассмотрим математическое описание марковского процесса с дискретными состояниями и непрерывным временем на примере случайного процесса из задачи 1, граф которого изображен на рис. 1. Будем полагать, что все переходы системы из состояния Si в Sj происходят под воздействием простейших потоков событий с интенсивностями lij(i, j=0,1,2,3); так, переход системы из состояния S0 в S1 будет происходить под воздействием потока отказов первого узла, а обратный переход из состояния S1 в S0 — под воздействием потока «окончаний ремонтов» первого узла и т.п.

Граф состояний системы с проставленными у стрелок интенсивностями будем называть размеченным (см. рис. 1). Рассматриваемая система S имеет четыре возможных состояния: S0, S1, S2, S3. Вероятностью i-го состояния называется вероятность pi(t) того, что в момент t система будет находиться в состоянии Si. Очевидно, что для любого момента t сумма вероятностей всех состояний равна единице:

.

Рассмотрим систему в момент t и, задав малый промежуток Dt, найдем вероятность p0(t+Dt) того, что система в момент t+ Dt будет находиться в состоянии S0. Это достигается разными способами. 1. Система в момент t с вероятностью p0(t) находилась в состоянии S0, а за время Dt не вышла из него.

Вывести систему из этого состояния можно суммарным простейшим потоком с интенсивностью (l01+l02), т.е. в соответствии с вероятностью, приближенно равной (l01+l02)Dt. А вероятность того, что система не выйдет из состояния S0, равна [1-(l01+l02)Dt]. Вероятность того, что система будет находиться в состоянии S0, по первому способу (т.е. того, что находилась в состоянии S0 и не выйдет из него за время Dt), равна по теореме умножения вероятностей:

.

2. Система в момент t с вероятностями р1(t) (или p2(t)) находилась в состоянии S1 или S2 и за время Dt перешла в состояние S0.

Потоком интенсивностью l10 (или l 20 — см. рис. 1) система перейдет в состояние S0 с вероятностью, приближенно равной l10Dt (или l20Dt). Вероятность того, что система будет находиться в состоянии S0 по этому способу, равна р1(t)×l10Dt (или р2(t)×l20Dt). Применяя теорему сложения вероятностей, получим

,

откуда

,

Переходя к пределу при Dt®0 (приближенные равенства, связанные с применением формулы (7), перейдут в точные), получим в левой части уравнения производную p’0(t) (обозначим ее для простоты p’0):

.

Получили дифференциальное уравнение первого порядка, т.е. уравнение, содержащее как саму неизвестную функцию, так и еепроизводную первого порядка. Рассуждая аналогично для других состояний системы S, можно получить систему дифференциальных уравнений Колмогорова для вероятностей состояний:

в левой части каждого уравнения стоит производная вероятности состояния, а правая содержит столько членов, сколько стрелок связано с данным соcтоянием. Если стрелка направлена из состояния, соответствующий член имеет знак «-», если в состояние знак «+». Каждый член равен произведению плотности вероятности перехода, соответствующему данной стрелке, умноженной на вероятность состояния, из которого исходит стрелка.

examination/mo/question21.txt · Последние изменения: 2014/01/15 12:19 (внешнее изменение)