Инструменты пользователя

Инструменты сайта


examination:elt:question56

Шифраторы. Шифратор унитарного кода в двоичный код. Шифратор двоичного кода в код семисегментного индикатора

Преобразователи кодов, шифраторы

Преобразователи кодов. Операция изменения кода числа называется его перекодированием Интегральные микросхемы, выполняющие эти операции, называются преобразователями кодов. Преобразователи кодов бывают простые и сложные. К простым относятся преобразователи, которые выполняют стандартные операции изменения кода чисел, например, преобразований двоичного кода в одинарный или обратную операцию. Сложные преобразователи кодов выполняют нестандартные преобразования кодов и их схемы приходится разрабатывать каждый раз с помощью алгебры логики.

Будем считать, что преобразователи кодов имеют п входов и к выходов. Соотношения между п и к могут быть любыми: п~к, п<к и п>к. При преобразовании кода чисел с ними могут выполняться различные дополнительные операции, например, умножение на весовые коэффициенты. Примером невесового преобразования является преобразование двоично-десятичного кода в двоичный. Весовые преобразователи кодов используются при преобразовании числовой информации. Интегральные микросхемы преобразователей кодов выпускаются только для наиболее распространенных операций:

• преобразователи двоично-десятичного кода в двоичный код;

• преобразователи двоичного кода в двоично-десятичный код;

• преобразователи двоичного кода в код Грея;

• преобразователи двоичного кода в код управления сегментными индикаторами;

• преобразователи двоичного или двоично-десятичного кода в код управления шкальными или матричными индикаторами.

В качестве примера рассмотрим преобразователь двоичного кода в код управления семисегментным цифровым индикатором, приведенный на рис 15.1 а

img205.imageshack.us_img205_2792_20120119215612.jpg

Сам индикатор представляет собой полупроводниковый прибор, в котором имеются семь сегментов, выполненных из светодиодов Включением и выключением отдельных сегментов можно получить светящееся изображение отдельных цифр или знаков. Конфигурация и расположение сегментов индикатора показаны на рис. 15.1 а. Каждой цифре соответствует свой набор включения определенных сегментов индикатора. Соответствующая таблица приведена на рис. 15 16. В этой таблице также приведены двоичные коды соответствующих цифр

Такие индикаторы позволяют получить светящееся изображение не только цифр от 0 до 9, но других знаков, используемых в 8- и 16-ричной системах счисления. Для управления такими индикаторами выпускаются интегральные микросхемы типов КР514ИД1, К514ИД2, К133ПП1, 176ИД2, 176ИДЗ, 564ИД4, 564ИД5 и др. Преобразователи кодов, выполненные по технологии КМОП, можно использовать не только со светодиодными индикаторами, но и с жидкокристаллическими или катодолюминисцентными.

Шкальные индикаторы представляют собой линейку светодиодов с одним общим анодом или катодом. Преобразователи двоичного кода в код управления шкальным индикатором обеспечивают перемещение светящегося пятна, определяемое двоичным кодом на адресном входе.

Матричные индикаторы представляют собой наборы светодиодов, расположенных по строкам и столбцам. Наиболее распространенными матричними индикаторами являются индикаторы, имеющие 5 столбцов и 7 строк (формат 5×7). Количество светодиодов в таких матричных индикаторах равно 35. Управление такими индикаторами производится путем выбора номера строки и номера столбца, на пересечении которых находится нужный светодиод. Примером такого матричного индикатора является прибор AJ1C340A с форматом 5×7 светодиодов (рис. 15 2 а).

img715.imageshack.us_img715_3527_20120119220449.jpg

Для управления матричными индикаторами выпускаются микросхемы, в которых положение светодиода задается номерами столбца i и строки у, причем не все комбинации i и j используются Такие преобразователи кодов называются неполными. К ним относятся микросхемы К155ИД8 и К155ИД9 (рис. 15 2 б).

Примерами простейших преобразователей кодов, которые широко применяются в цифровых устройствах, являются шифраторы и дешифраторы.

Шифратором называют кодовый преобразователь, который имеет п входов и к выходов, и при подаче сигнала на один из входов (обязательно только на один) на выходах появляется двоичный код возбужденного входа. Очевидно, что число выходов и входов в полном шифраторе связано соотношением

п=2^к. (15.1)

Рассмотрим принцип построения шифратора на примере преобразования 8-разрядного единичного кода в двоичный код. Схема такого шифратора приведена на рис. 15.3 а, а его условное схематичное обозначение — на рис. 15 3 6.

img189.imageshack.us_img189_2637_20120119220723.jpg

Если все входные сигналы имеют нулевое значение, то на выходе шифратора будем иметь нулевой код У0 = Y1 = Y2=0.

Младший выход, т е выход с весовым коэффициентом, равным 1, должен возбуждаться при входном сигнале на любом из нечетных входов, так как все нечетные номера в двоичном представлении содержат единицу в младшем разряде. Следовательно, младший выход — это выход схемы ИЛИ, к входам которой подключены все входы с нечетными номерами.

Следующий выход имеет вес два Он должен возбуждаться при подаче сигналов на входы с номерами 2, 3, 6, 7, т. е. с номерами, имеющими в двоичном представлении единицу во втором разряде. Таким образом, входы элемента ИЛИ должны быть подключены к входным сигналам, имеющим указанные номера.

Старший разряд двоичного кода формируется из входных сигналов с номерами 4, 5, 6 и 7, т. е из четырех старших разрядов единичного кода. Все рассмотренные состояния шифратора можно увидеть в таблице, приведенной на рис. 15.1 б.

Как следует из выполненного построения, при помощи шифратора можно сократить (сжать) информацию для передачи ее по меньшему числу линий связи, так как к < п. Обратное преобразование, т. е. восстановление информации в первоначальном виде можно выполнить с помощью дешифратора. Очевидно, что максимальное число входов шифратора не может превышать количество возможных комбинаций выходных сигналов, т. е. необходимо выполнение условия n⇐ 2^к (см уравнение (15.1) для полного шифратора).

В цифровых системах с помощью шифраторов обеспечивается связь между различными устройствами посредством ограниченного числа линий связи Так, например, в кнопочных пультах управления ввод числовых данных обычно выполняется в унитарном коде посредством нажатия одной из десяти кнопок, а ввод данных в микропроцессор выполняется в двоичном коде. Для преобразования кода кнопочного пульта в код микропроцессора также используется шифратор «из 10 в 4». Однако, поскольку четырехразрядный двоичный код имеет не 10, а 16 возможных комбинаций, такой шифратор будет неполным.

Состояние выходов шифратора, изображенного на рис. 15.3 а, приведено в табл. 15.1. Из этой таблицы следует, что для шифраторов должно выполняться условие xixj=0 при i<>j.

Если сигналы, поступающие на вход шифратора, являются независимыми, что бывает, например, при нажатии одновременно нескольких кнопок на кнопочном пульте управления, то условие хiхj=0 не выполняется. В этом случае каждому входу xi шифратора назначают свой приоритет. Обычно считают, что чем выше номер входа, тем выше его приоритет. В этом случае шифратор должен выдавать на выходе двоичный код числа i, если хi = 1, а на все входы xj, имеющие больший приоритет, поданы нули. Такие шифраторы называются приоритетными, например, если на входе шифратора установлен код 0011, то на выходе будет код 01.

examination/elt/question56.txt · Последние изменения: 2014/01/15 08:17 (внешнее изменение)