Инструменты пользователя

Инструменты сайта


examination:diskretka:question1

Вопрос №1. Происхождение и задачи теории графов

В 1736 году задача о семи мостах Кёнигсберга заинтересовала выдающегося математика, члена Петербургской академии наук Леонарда Эйлера, о чём он написал в письме итальянскому математику и инженеру Мариони от 13 марта 1736 года. В этом письме Эйлер пишет о том, что он смог найти правило, пользуясь которым легко определить, можно ли пройти по всем мостам, не проходя дважды ни по одному из них (в случае семи мостов Кёнигсберга это невозможно).

На упрощённой схеме части города (графе) мостам соответствуют линии (рёбра графа), а частям города — точки соединения линий (вершины графа). В ходе рассуждений Эйлер пришёл к следующим выводам:

Число нечётных вершин (вершин, к которым ведёт нечётное число рёбер) графа должно быть чётно. Не может существовать граф, который имел бы нечётное число нечётных вершин. Если все вершины графа чётные, то можно, не отрывая карандаша от бумаги, начертить граф, при этом можно начинать с любой вершины графа и завершить его в той же вершине. Граф с более чем двумя нечётными вершинами невозможно начертить одним росчерком. Граф кёнигсбергских мостов имел четыре нечётные вершины (т.е. все), следовательно, невозможно пройти по всем мостам, не проходя ни по одному из них дважды.


Некоторые задачи теории графов:

1)Задача о клике относится к классу NP-полных задач в области теории графов. Впервые она была сформулирована в 1972 году Ричардом Карпом. Кликой в неориентированном графе называется подмножество вершин, каждые две из которых соединены ребром графа. Иными словами, это полный подграф первоначального графа. Размер клики определяется как число вершин в ней. Задача о клике существует в двух вариантах: в задаче распознавания требуется определить, существует ли в заданном графе G клика размера k, в то время как в вычислительном варианте требуется найти в заданном графе G клику максимального размера.

2)Нахождение минимального стягивающего (оставного) дерева.

3)Изоморфизм графов — можно ли путем перенумерации вершин одного графа получить другой или его часть.

4)Планарность графа — можно ли изобразить граф на плоскости без пересечений ребер (или с минимальным числом слоев, что находит применение при трассировке межсоединений элементов печатных плат или микросхем).


Применение теории графов:

  • В химии (для описания структур, путей сложных реакций, правило фаз также может быть интерпретировано как задача теории графов); компьютерная химия — сравнительно молодая область химии, основанная на применении теории графов. Теория графов представляет собой математическую основу хемоинформатики. Теория графов позволяет точно определить число теоретически возможных изомеров у углеводородов и других органических соединений.
  • В информатике и программировании
  • В коммуникационных и транспортных системах. В частности, для маршрутизации данных в Интернете.
  • В экономике
  • В логистике
  • В схемотехнике
examination/diskretka/question1.txt · Последние изменения: 2014/01/15 08:14 (внешнее изменение)