Инструменты пользователя

Инструменты сайта


examination:computer_science:question24

Вопрос №24 Система прерываний ЭВМ

Современная ЭВМ представляет собой комплекс автономных устройств, каждое из которых выполняет свои функции под управлением местного устройства управления независимо от других устройств машины. Включает устройство в работу центральный процессор. Он передает устройству команду и все необходимые для ее исполнения параметры. После начала работы устройства центральный процессор отключается от него и переходит к обслуживанию других устройств или к выполнению других функций.

Можно считать, что центральный процессор переключает свое внимание с устройства на устройство и с функции на функцию. На что именно обращено внимание ЦП в каждый данный момент, определяется выполняемой им программой.

Во время работы в ЦП поступает (и вырабатывается в нем самом) большое количество различных сигналов. Сигналы, которые выполняемая в ЦП программа способна воспринять, обработать и учесть, составляют поле зрения ЦП или другими словами - входят в зону его внимания.

Для того чтобы ЦП, выполняя свою работу, имел возможность реагировать на события, происходящие вне его зоны внимания, наступления которых он “не ожидает”, существует система прерываний ЭВМ. При отсутствии системы прерываний все заслуживающие внимания события должны находиться в поле зрения процессора, что сильно усложняет программы и требует большой их избыточности. Кроме того, поскольку момент наступления события заранее не известен, процессор в ожидании какого-либо события может находиться длительное время, и чтобы не пропустить его появления, ЦП не может “отвлекаться” на выполнение какой-либо другой работы. Такой режим работы (режим сканирования ожидаемого события) связан с большими потерями времени ЦП на ожидание.

Кроме сокращения потерь на ожидание, режим прерываний позволяет организовать выполнение такой работы, которую без него реализовать просто невозможно. Например, при появлении неисправностей, нештатных ситуаций режим прерываний позволяет организовать работу по диагностике и автоматическому восстановлению в момент возникновения нештатной ситуации, прервав выполнение основной работы таким образом, чтобы сохранить полученные к этому времени правильные результаты. Тогда как без режима прерываний обратить внимание на наличие неисправности система могла только после окончания выполняемой работы (или ее этапа) и получения неправильного результата.

Прерывание (англ. interrupt) — сигнал, сообщающий процессору о наступлении какого-либо события. При этом выполнение текущей последовательности команд приостанавливается и управление передаётся обработчику прерывания, который реагирует на событие и обслуживает его, после чего возвращает управление в прерванный код

Принцип действия системы прерываний заключается в следующем:

при выполнении программы после каждого рабочего такта микропроцессора изменяются содержимое регистров, счетчиков, состояние отдельных управляющих триггеров, т.е. изменяется состояние процессора. Информация о состоянии процессора лежит в основе многих процедур управления вычислительным процессом. Не вся информация одинаково актуальна, есть существенные элементы, без которых невозможно продолжение работы. Эта информация должна сохраняться при каждом “переключении внимания процессора”.

Совокупность значений наиболее существенных информационных элементов называется вектором состояния или словом состояния процессора (в некоторых случаях она называется словом состояния программы).

Вектор состояния в каждый момент времени должен содержать информацию, достаточную для продолжения выполнения программы или повторного пуска ее с точки, соответствующей моменту формирования данного вектора.

Вектор состояния формируется в соответствующем регистре процессора или в группе регистров, которые могут использоваться и для других целей.

В зависимости от источника возникновения сигнала прерывания делятся на:

  • асинхронные или внешние (аппаратные) — события, которые исходят от внешних источников (например, периферийных устройств) и могут произойти в любой произвольный момент: сигнал от таймера, сетевой карты или дискового накопителя, нажатие клавиш клавиатуры, движение мыши;
  • внутренние — события в самом процессоре как результат нарушения каких-то условий при исполнении машинного кода: деление на ноль или переполнение, обращение к недопустимым адресам или недопустимый код операции;
  • программные (частный случай внутреннего прерывания) — инициируются исполнением специальной инструкции в коде программы. Программные прерывания как правило используются для обращения к функциям встроенного программного обеспечения (firmware), драйверов и операционной системы.

В зависимости от возможности запрета внешние прерывания делятся на:

  • маскируемые — прерывания, которые можно запрещать установкой соответствующих битов в регистре маскирования прерываний (в x86-процессорах — сбросом флага IF в регистре флагов);
  • немаскируемые (англ. Non maskable interrupt, NMI) — обрабатываются всегда, независимо от запретов на другие прерывания. К примеру, такое прерывание может вызвать сбой в микросхеме памяти.

Обработчики прерываний обычно пишутся таким образом, чтобы время их обработки было как можно меньшим, поскольку на время их работы могут не обрабатываться другие прерывания, а если их будет много (особенно от одного источника), то они могут теряться.


До окончания обработки прерывания обычно устанавливается запрет на обработку этого типа прерывания, чтобы процессор не входил в цикл обработки одного прерывания. Приоритезация означает, что все источники прерываний делятся на классы и каждому классу назначается свой уровень приоритета запроса на прерывание. Приоритеты могут обслуживаться как относительные и абсолютные. Относительное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то это прерывание будет обработано только после завершения текущей процедуры обработки прерывания. Абсолютное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то текущая процедура обработки прерывания вытесняется, и процессор начинает выполнять обработку вновь поступившего более приоритетного прерывания. После завершения этой процедуры процессор возвращается к выполнению вытесненной процедуры обработки прерывания.


Программное прерывание — синхронное прерывание, которое может осуществить программа с помощью специальной инструкции.

В процессорах архитектуры x86 для явного вызова синхронного прерывания имеется инструкция Int, аргументом которой является номер прерывания (от 0 до 255). В IBM PC-совместимых компьютерах обработку некоторых прерываний осуществляют подпрограммы BIOS, хранящиеся в ПЗУ, и это служит интерфейсом для доступа к сервису, предоставляемому BIOS. Также, обслуживание прерываний могут взять на себя BIOS карт расширений (например, сетевых или видеокарт), операционная система и даже обычные (прикладные) программы, которые постоянно находятся в памяти во время работы других программ (т. н. резидентные программы). В отличие от реального режима, в защищённом режиме x86-процессоров обычные программы не могут обслуживать прерывания, эта функция доступна только системному коду (операционной системе).

MS-DOS использует для взаимодействия со своими модулями и прикладными программами прерывания с номерами от 20h до 3Fh (числа даны в шестнадцатиричной системе счисления, как это принято при программировании на языке ассемблера x86). Например, доступ к основному множеству функций MS-DOS осуществляется исполнением инструкции Int 21h (при этом номер функции и её аргументы передаются в регистрах). Это распределение номеров прерываний не закреплено аппаратно и другие программы могут устанавливать свои обработчики прерываний вместо или поверх уже имеющихся обработчиков, установленных MS-DOS или другими программами, что, как правило, используется для изменения функционала или расширения списка системных функций. Также, этой возможностью пользуются вирусы.

examination/computer_science/question24.txt · Последние изменения: 2014/01/15 08:14 (внешнее изменение)