Инструменты пользователя

Инструменты сайта


examination:asm:question1

Вопрос №1. Понятие об архитектуре ЭВМ. Машина Фон-Неймана. Принципы Фон-Неймана. Структуры и характеристики памяти

Понятие об архитектуре ЭВМ

Под архитектурой ЭВМ понимается функциональная и структурная организация машины, определяющая методы кодирования данных, состав, назначение, принципы взаимодействия технических средств и программного обеспечения.

Можно выделить следующие важные для пользователя группы характеристик ЭВМ, определяющих её архитектуру:

  1. характеристики и состав модулей базовой конфигурации ЭВМ;
  2. характеристики машинного языка и системы команд (количество и номенклатура команд, их форматы, системы адресации, наличие программно-доступных регистров в процессоре и т.п.), которые определяют алгоритмические возможности процессора ЭВМ;
  3. технические и эксплуатационные характеристики ЭВМ;
  4. состав программного обеспечения ЭВМ и принципы его взаимодействия с техническими средствами ЭВМ.

К наиболее общему принципу классификации ЭВМ и систем по типам архитектуры следует отнести разбиение их на однопроцессорные и многопроцессорные архитектуры . Исторически первыми появились однопроцессорные архитектуры. Классическим примером однопроцессорной архитектуры является архитектура фон Неймана со строго последовательным выполнением команд: процессор по очереди выбирает команды программы и также по очереди обрабатывает данные (программа и данные хранятся в единственной последовательно адресуемой памяти).

img141.imageshack.us_img141_116_15673811.jpg

По мере развития вычислительной техники архитектура фон Неймана обогатилась сначала конвейером команд, а затем многофункциональной обработкой, и по таксономии М.Флина получила обобщенное название компьютера с одним потоком команд и одним потоком данных.

Поток команд - это последовательность команд, выполняемых ЭВМ (системой), а поток данных - последовательность данных (исходная информация и промежуточные результаты решения задачи), обрабатываемых под управлением потока команд.

Машина Фон-Неймана. Принципы Фон-Неймана

Все современные компьютеры обладают некоторыми общими и индивидуальными архитектурными свойствами. Индивидуальные свойства присущи только конкретной модели компьютера и отличают ее от своих больших и малых собратьев. Общие архитектурные свойства, наоборот, присущи некоторой, часто довольно большой группе компьютеров. На сегодняшний день общие архитектурные свойства большинства современных компьютеров подпадают под понятие фон-неймановской архитектуры. Так названа архитектура по имени ученого фон Неймана. Когда фон Нейман начал заниматься компьютерами, программирование последних осуществлялось способом коммутирования.

В первых ЭВМ для генерации нужных сигналов необходимо было с помощью переключателей выполнить ручное программирование всех логических схем. В первых машинах использовали десятичную логику, при которой каждый разряд представлялся десятичной цифрой и моделировался 10 электронными лампами. В зависимости от нужной цифры одна лампа включалась, остальные девять оставались выключенными. Фон Нейман предложил схему ЭВМ с программой в памяти и двоичной логикой вместо десятичной. Логически машину фон Неймана составляли пять блоков (рис. 2.1): оперативная память, арифметико-логическое устройство (АЛУ) с аккумулятором, блок управления, устройства ввода и вывода. Особо следует выделить роль аккумулятора. Физически он представляет собой регистр АЛУ. Для процессоров Intel, в которых большинство команд — двухоперандные, его роль не столь очевидна. Но существовали и существуют процессорные среды с однооперандными машинными командами. В них наличие аккумулятора играет ключевую роль, так как большинство команд используют его содержимое в качестве либо второго, либо единственного операнда команды.

Рис. 2.1. Схема машины фон Неймана

Ниже описаны свойства и принципы работы машины фон Неймана.

Линейное пространство памяти. Для оперативного хранения информации компьютер имеет совокупность ячеек с последовательной нумерацией (адресами) 0, 1, 2,… Данная совокупность ячеек называется оперативной памятью.

Принцип хранимой программы. Согласно этому принципу, код программы и ее данные находятся в одном и том же адресном пространстве оперативной памяти.

Принцип микропрограммирования. Суть этого принципа заключается в том, что машинный язык еще не является той конечной субстанцией, которая физически приводит в действие процессы в машине. В состав процессора (см. главу 1) входит устройство микропрограммного управления, поддерживающее набор действий-сигналов, которые нужно сгенерировать для физического выполнения каждой машинной команды.

Последовательное выполнение программ. Процессор выбирает из памяти команды строго последовательно. Для изменения прямолинейного хода выполнения программы или осуществления ветвления необходимо использовать специальные команды. Они называются командами условного и безусловного переходов.

Отсутствие разницы между данными и командами в памяти. С точки зрения процессора, нет принципиальной разницы между данными и командами. Данные и машинные команды находятся в одном пространстве памяти в виде последовательности нулей и единиц. Это свойство связано с предыдущим. Процессор, поочередно обрабатывая некоторые ячейки памяти, всегда пытается трактовать содержимое ячеек как коды машинных команд, а если это не так, то происходит аварийное завершение программы. Поэтому важно всегда четко разделять в программе пространства данных и команд.

Безразличие к назначению данных. Машине все равно, какую логическую нагрузку несут обрабатываемые ею данные.

Память

Память – один из блоков ЭВМ, состоящий из ЗУ и предназначенный для запоминания, хранения и выдачи информации (алгоритма обработки данных и самих данных).

Основными характеристиками отдельных устройств памяти (запоминающих устройств) являются емкость памяти, быстродействие и стоимость хранения единицы информации (бита).

Быстродействие (задержка) памяти определяется временем доступа и длительностью цикла памяти. Время доступа представляет собой промежуток времени между выдачей запроса на чтение и моментом поступления запрошенного слова из памяти. Длительность цикла памяти определяется минимальным временем между двумя последовательными обращениями к памяти.

Требования к увеличению емкости и быстродействия памяти, а также к снижению ее стоимости являются противоречивыми. Чем больше быстродействие, тем технически труднее достигается и дороже обходится увеличение емкости памяти. Стоимость памяти составляет значительную часть общей стоимости ЭВМ. Как и большинство устройств ЭВМ, память имеет иерархическую структуру. Обобщённая модель такой структуры, отражающая многообразие ЗУ и их взаимодействие, представлена на рисунке 8.1. Все запоминающие устройства обладают различным быстродействием и емкостью. Чем выше уровень иерархии, тем выше быстродействие соответствующей памяти, но меньше её емкость.

img80.imageshack.us_img80_4896_26555890.jpg

Рис. Иерархическая структура памяти

К самому высокому уровню - сверхоперативному - относятся регистры управляющих и операционных блоков процессора, сверхоперативная память, управляющая память, буферная память (кэш-память). На втором оперативном уровне, более низком, находится оперативная память (ОП), служащая для хранения активных программ и данных, то есть тех программ и данных, с которыми работает ЭВМ. На следующем более низком внешнем уровне размещается внешняя память.

Местная память или регистровая память процессора. Входит в состав ЦП (регистры управляющих и операционных блоков процессора) и предназначена для временного хранения информации. Она имеет малую ёмкость и наибольшее быстродействие. Построена на базе регистров общего назначения. РОН конструктивно совмещены с процессором ЭВМ. Этот тип ЗУ используется для хранения управляющих и служебных кодов, а также информации, к которой наиболее часто обращается процессор при выполнении программы.

Сверхоперативная память. Иногда в архитектуре ЭВМ регистровая память организуется в виде сверхоперативного ЗУ с прямой адресацией. Такая память имеет то же назначение как и РОН, служит для хранения операндов, данных и служебной информации, необходимой процессору.

Управляющая память предназначена для хранения управляющих микропрограмм процессора (см. раздел Устройство управления микропрограммного типа). Выполнена в виде постоянного ЗУ (ПЗУ) или программируемого постоянного ЗУ (ППЗУ). В системах с микропрограммным способом обработки информации УП применяется для хранения однажды записанных микропрограмм, управляющих программ, констант и т.п.

Буферная память. В функциональном отношении кэш-память рассматривается как буферное ЗУ, размещённое между основной (оперативной) памятью и процессором. Основное назначение кэш-памяти - кратковременное хранение и выдача активной информации процессору, что сокращает число обращений к основной памяти, скорость работы которой меньше, чем кэш-памяти. Кэш – память от английского cashe – тайник. Она не является программно доступной. Поэтому она оказывает влияние на производительность ЭВМ, но не влияет на программирование прикладных задач. В современных ЭВМ различают кэш первого и второго уровней. Кэш первого уровня интегрирована с блоком предварительной выборки команд и данных ЦП и служит, как правило, для хранения наиболее часто используемых команд. Кэш второго уровня служит буфером между ОП и процессором. В некоторых ЭВМ существует кэш память отдельно для команд и отдельно для данных.

ОП (ОЗУ) служит для хранения информации, непосредственно участвующей в вычислительном процессе (происходящем в операционном устройстве - АЛУ). Из ОЗУ в процессор поступают коды и операнды, над которыми производятся предусмотренные программой операции, из процессора в ОЗУ направляются для хранения промежуточные и конечные результаты обработки информации. ОЗУ имеет сравнительно большую ёмкость и высокое быстродействие, однако меньшее, чем ЗУ сверхоперативного уровня.

Внешняя память (ВнП) используется для хранения больших массивов информации в течении продолжительного времени. Обычно ВнП не имеет непосредственной связи с процессором. Обмен информацией носит групповой характер, что значительно сокращает время обмена. ВнП обладает сравнительно низким быстродействием (поиск информации). В качестве носителя используются магнитные диски (гибкие и жёсткие), лазерные диски(CD-room) и др.

examination/asm/question1.txt · Последние изменения: 2014/01/15 08:12 (внешнее изменение)